Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant Face Verification

نویسندگان

  • Yi Li
  • Lingxiao Song
  • Xiang Wu
  • Ran He
  • Tieniu Tan
چکیده

Makeup is widely used to improve facial attractiveness and is well accepted by the public. However, different makeup styles will result in significant facial appearance changes. It remains a challenging problem to match makeup and non-makeup face images. This paper proposes a learning from generation approach for makeup-invariant face verification by introducing a bi-level adversarial network (BLAN). To alleviate the negative effects from makeup, we first generate non-makeup images from makeup ones, and then use the synthesized nonmakeup images for further verification. Two adversarial networks in BLAN are integrated in an end-to-end deep network, with the one on pixel level for reconstructing appealing facial images and the other on feature level for preserving identity information. These two networks jointly reduce the sensing gap between makeup and non-makeup images. Moreover, we make the generator well constrained by incorporating multiple perceptual losses. Experimental results on three benchmark makeup face datasets demonstrate that our method achieves state-of-the-art verification accuracy across makeup status and can produce photo-realistic non-makeup

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A weakly supervised method for makeup-invariant face verification

Face verification, which aims to determine whether two face images belong to the same identity, is an important task in multimedia area. Face verification becomes more challenging when the person is wearing makeup. However, collecting sufficient makeup and non-makeup image pairs are tedious, which brings great challenges for deep learning methods of face verification. In this paper, we propose ...

متن کامل

Semantic Reconstruction of Beauty and Makeup for Young Females: The Phenomenological Study

The concept of beauty is closely linked to gender in contemporary society; in this study, the concept of beauty was explored by the use of phenomenological techniques. For this purpose, an in-depth semi-structured interview was conducted among 35 young female students in Tehran. the sample of study was chosen by theoretical sampling model and the interviews were continued up to the point of  ga...

متن کامل

Learning Face Age Progression: A Pyramid Architecture of GANs

The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well handled in the literature. In this paper, we present a novel generative adversarial network based approach. It separately models the constraints for the intrinsic subjectspecific characteristics and the age-specific facial changes with respect to the elapsed time, ensuring that the...

متن کامل

An ensemble of patch-based subspaces for makeup-robust face recognition

Recent research has demonstrated the negative impact of makeup on automated face recognition. In this work, we introduce a patch-based ensemble learning method, which uses multiple subspaces generated by sampling patches from before-makeup and after-makeup face images, to address this problem. In the proposed scheme, each face image is tessellated into patches and each patch is represented by a...

متن کامل

Makeup Like a Superstar: Deep Localized Makeup Transfer Network

In this paper, we propose a novel Deep Localized Makeup Transfer Network to automatically recommend the most suitable makeup for a female and synthesis the makeup on her face. Given a before-makeup face, her most suitable makeup is determined automatically. Then, both the beforemakeup and the reference faces are fed into the proposed Deep Transfer Network to generate the after-makeup face. Our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.03654  شماره 

صفحات  -

تاریخ انتشار 2017